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Abstract

We review the formalism for describing the two photon state produced in spontaneous

parametric down conversion.

1 Introduction

In this discussion we will first outline the general theory of optical spontaneous parametric down-

conversion (OPDC). We will then discuss the phase matching conditions. After this we will discuss

the classification of OPDC into type-I and type-II. Finally we will present our picture of the two

photon state generated by the thory.

The work discussed in this paper is the result of the efforts of the members of the UMBC

Quantum Optics Group:

Y. H. Shih

A. V. Sergienko
T. Pittman

D. Strekalov

J. Orzak

D. N. Klyshko (Moscow State University)

2 Optical Parametric Downconversion

Optical Parametric down conversion is modeled (in the interaction picture) by the interaction

Hamiltonian [1][21

eO / 3 (2)H1 = -_ _ d rXpbcEp(r,t)Eb(r,t)Ec(r,t ) (1)

where Ep is the pump electric field and z,_bc"(2) is the second order susceptibility, (X = X (1) + X'(2) +

X (3) +...). The integral is over the intersection of the birefringent crystal and the pump beam. In

writing this it is assumed that the crystal does not have a center of symmetry so - (2),t_bc 7_ 0 and that

wave length of the light is much greater than atomic dimensions so the crystal can be treated in

the continuum limit. The pump is be treated classically. For spontaneous optical parametric down

conversion the wave function incident on the crystal is assumed to be the vacuum, I@ >= I0 >.
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[_sing first order perturbation theory, we can compute the wave function produced at the output

face of the crystal. It is a superposition of the vacuum and a two-photon state. The two photon

beams are often referred to as the signal and idler beams. In our case, we choose the orientation of

the optic axis of the crystal and the polarization of the pump beam so that the produced photons

have orthogonal polarizations corresponding to ordinary (o-rays) and extraordinary (e-rays) rays

in the crystal.

Fi dtH1 [0 >> = Io >

: 10 > + _ Fk.k,a!k,a!k, lO >,

k,k'

Fk,k, = Fk,k,5(Wok -_- COck -- cop)Lh(LAk,k,)htr(k, k').

In Eq. (3) Lh(LAkk,) comes from the integral over the length L of the crystal,

1 - e -ix

h(x) - ix

Akk, = kp -- kz -- klz

(2)

(3)

(4)

(5)

The integral over the area A of the intersection of the beam cross-section and the crystal gives

k') = fA d2p ei(k+k')'P" (6)hit(k,

The time integral gives the 2_r times the Dirac delta function which is the steady-state or frequency

phase matching condition. If we assume that the crystal is very large and the pump beam has a

large cross section, then the integrals can be taken to extend over an infinite volume. This leads

to the wave number phase matching condition

k + k' = kp6_. (7)

The assumption of a monochromatic pump beam gives

CUp = Wok + 03ek,. (8)

3 The properties of the two photon state

3.1 Terminology

We introduce some terminology for OPDC.

• Collinear k and k' are parallel to kp

• Degenerate wl = w2

• Type-I Signal and idler have same polarization

• Type-II Signal and idler have orthogonal polarization

We next remind the reader of the definition of an entangled state [3]. For two degrees of

freedom, we say a state kO(1,2) is entangled if it is not a product state, i.e. q(1,2) # _b(1)$(2). A

simple example of an entangled state is the singlet state of two spin-l/2 particles.
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3.2 OPDC two photon state

[4] The state in Eq.(2) is entangled in wave number and frequency or, equivMently, in space and

time because Fkk, does not factor into a function of k and k'. In general, it is not entangled in
polarization.

ct

-L

A

/
//

0

o-ray

e-ray

s

fflG. 1. A ffeynman-like diagram showing a pair created at point A inside the

crystal. For the case shown the speed of the e-ray is greater than that of the o-ray

in the crystal. Since the first photon is always the e-ray, the state is not entangled in

polarization.

The simplest experiment to study the two photon state is illustrated below.
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©

FIG. 2. A collinear, type-II experiment. The beam splitter seperates the polar-

izations and sends them to the two detectors D1 and D2. A coincident counter, C
J_

detects coincidences.

l:or this is a collinear, lype-II experiment the output is given by the coincident counting rate

t{. = li,n 1 _" f0 T EI-,p2:-)E._+,.,,-.- W (zz', ,z7'2< q, I I':l+_1q' > .s"(7 'l -- _[ ? )
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whereS(t) is a coincidencetime window. 'Pile probability of a coincidenceis

=< 01g +ll  +/I, >

_, = 7) - _j/c

(lo)

(ll)

where J' 2 is the time at, which a photon is detected at detector j which is a distance z2 from the

output surface of the crystal. A is called the two-photon amplitude or bipholon. The two-photon

amplitude is of t,he form

A(t,,t2) = v(t_ + t2)u(t, - t2) (13)

u(t) = ei_'d}II(t), (14)

v(t) = v0ei_'v_ (15)

cod = flo - 9t_. (16)

The quantities f/o and Fl_, (_o + Q_ = wv) are chosen for convenience. ["or details see [4].

FIG. 3. An illustration of the two-photon amplitude. In most experiments the

width in *1 - t2 is much smaller than the length in tl + t2. The latter is determined

by the coherence length of the pump.

3.3 Double entanglement

It is possible to entangle the polarization as well as the energy and momentum. The simplest

experiment for seeing this is shown in figure 4 below.

A birefringent crystal is placed in the path of the rays to compensate for the different group

velocities of the o- and e-rays. If the e-ray emerges from the crystal first, the compensator is
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arrangedso tile e-raypassesalong its slowaxis. The length of the comt)ensatormay be varied so

that it introduces a delay r in t.he e-ray relative to the o-ray.

pump crystal BS D1

beam _

Birefringent

crystal

D2
C

0

FIG. 4. The use of a birefringent crystal as a compensator.

If the beam splitter is a 50-50 beam splitter, then the two photon amplitude becomes

1

A(t,,t2) = _v(tl + t2 - r)[u(t, - t2 + r) - u(-tl + t2 + r)]. (17)

The minus sign comes from the reflection off the mirror. The figure below illustrates the form of

the bracketed term in Eq.(17). The probability amplitude will show interference between these

two terms if r is chosen so the two terms overlap. The xounting rate is then vee shaped, going

to zero for complete overlap. We refer you to Dr. Sergienko's talk for details of the experimental
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FIG. 5. The form o[ the amplitude in Eq. (17) is shown for no overlap and partial

overlap.
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We alsoillustrate this effect usingFeynman-likediagramsfor a sometypical pairs.
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FIG. 6. These diagrams illustrate how the compensator effects pairs that are cre-

ated at point A near tile input, at the center, and near the output of tile crystal.

4 Conclusion

We [lave a good understanding of the structure of tile two-photon amplitude both theoretically

and experimentally. The experimental results have been reported by other members of our group

at this meeting. We have recently completed some work on the transverse correlations of the

signal and idler beams.
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